TROUS dans l'UNIVERS

-trous dans l'univers

TROU NOIR- GENERALITES

Il existe certaines zones de l'espace où les masses s'agglutinent, puis subissent un phénomène de vortex irréversible où elles disparaissent définitivement : ce sont les trous noirs, zones de destructuration locale de l'espace, pouvant affecter n'importe quel volume (micro ou macro-physique)

Les géodésiques s'y engouffrent, dans un secteur-limite dit "horizon du trou noir"

La proximité moyenne pour qu'un objet soit soumis à l’aspiration d'un trou noir est de 6.1010 mètres

Les photons disparaissent aussi dans un trou noir, ainsi que les charges électriques supportées par les masses

Le trou noir est le lieu où la matière fait le cheminement inverse de celui ayant provoqué sa création. La masse redevient une charge mésonique qui est une masse manquante (voir ce chapitre) on a alors  m = Y* / G  

où m(kg)= masse détruite (particule moyenne de 3.10-27 kg)

G = constante de gravitation [8,385.10-10 m3-sr/kg-s²]

Y* = charge mésonique créée (unitaire = 2,4.10-36 m3-sr/s²)

 

TROU NOIR ASTRAL (ou stellaire)

Il prend naissance quand intervient la destruction d'un astre en fin de vie. Ceci arrive quand le rayon de l'astre devient critique (atteignant la longueur de Schwarzschild    lS = 2m./ c².Ω)

où lS(m)= rayon critique de l’astre

m(kg)= masse de l’astre

G(m3-sr/kg-s²)= constante de gravitation(8,835.10-10 unité S.I.+ )

Ω(sr)= angle solide de l’espace ambiant (4p sr si l’on utilise un système où le stéradian est unité d'angle)

 

Un tel trou noir en rotation rapide est du modèle Kerr.

 

Si la rotation est faible, il est dit de Schwarzschild

 

L'horizon vibrant d'un trou noir émet des ondes gravitationnelles

 

Exemple d'un trou noir issu d'une étoile comme le soleil 

Son rayon serait lG.mΩ.c²   où G= 8,385.10-10 m3-sr/kg-s² , ms(solaire) = 1,989.1030 kg, Ω(sr) = 4sr et c ~ 3.10m/s >>>

d’où l= 1,5.10m (donc de l'ordre du kilomètre)

Exemple du trou noir du centre de la voie lactée : il est nommé Sagittarius A.

Il a une masse de 1036 kg (c'est à dire 4 millions de soleils)

Son rayon est de l'ordre de 10 unité astromique (donc 1012 m.)

Exemple des plus gros trous noirs connus

leur rayon est ~ 1013 m et leur masse 1010 soleils (donc 1040 kg)  

Exemple de l'univers (s'il était soudain entièrement transformé en un seul gigantesque trou noir) son volume serait, d'après Schwartzschild, égal à

(G.m/ Ω.c²)3, ce qui donne environ 1026 mètres cubes

Parallèlement, comme la matière baryonique dans un trou noir est dans sonétat le plus dense possible (c'est à dire sans aucun espacement entre les quarks), ceci entraîne que son covolume soit égal à

[volume d'un quark = 2.10-57m3]x nombre de quarks dans l'univers[4.1082]

ce qui donne environ 1026 mètres cubes (en confirmation de ci-dessus)

Ces supputations sont de toute façon parfaitement vaines, car à ce moment là, la matière aura totalement disparu--transformée en chaleur, phénomène impalpable et inutile--

-température d'un trou noir (équation du rayonnement de Hawking)

On estime qu'un certain rayonnement thermique reste émis par les particules lors de leur absorption ultime dans un trou noir.La température de ce rayonnement est dite

température de Hawking et est notée THB (en référence à hole black)

elle vaut  THB = 2 Ω.h.c3 / k.G.m  

avec THB(K)= température d'un trou noir de masse m(kg)

Ω(sr)= angle solide (en général 4p sr)

h = constante de Planck, k = constante de Boltzmann et G = constante de gravitation

Comme T est inversement proportionnel à la masse du trou, les gros trous ont la plus faible température. Plus un trou noir rayonne, plus il est chaud.

 

-rayon gravitationnel

on définit ce rayon (lG) comme celui de la sphère d'un ensemble astral se trouvant dans la situation suivante : son énergie relativiste est devenue égale à l'énergie de liaison gravitationnelle de ses éléments. Donc  m.c² = m².G / lG   ce qui amène lG = m.G / c²

On a en pratique  lG = 1500 (m / mS) où mS est la masse solaire

Le rayon gravitationnel est différent du rayon de Schwarzschild

 

-rôle de la densité

pour qu'un trou noir se forme, il suffit que la masse volumique de la matière ambiante atteigne la valeur de ρ = 7.(4p)3.c6.S3 / m².G3  

 

-entropie (S) d’un trou noir

S = k.S.c3 h.G    avec (k (J/K)= constante de Boltzmann, S(m²)= aire du trou, c (m/s)= constante d'Einstein, h = constante de Planck réduite, G = constante de gravitation

-voir valeurs de ces diverses constantes dans tableau en exergue-

 

-un blazar est un astre qui contient un trou noir hypermassif, expédiant souvent des jets de plasma à vitesse proche de (c) et dont la polarisation provient du fort champ électrique règnant en cet endroit, sous forme spiralée

 

TROU NOIR d'ORIGINE NON ASTRALE

un trou noir peut théoriquement apparaître dans un volume très petit (y compris dans d’éventuelles expériences terrestres humaines)

Si le trou noir se manifestait pour une boule d’acier de 1 tonne: son diamètre (lS) serait de 10-24 m

Dans un trou noir, la constante de couplage de gravitation est plus élevée que la normale.

 

TROU BLANC (ou TROU de RESONANCE)

C'est l'opposé du trou noir, c'est à dire une zone où il y création de matière.

L'équation énergétique en sortie de trou blanc est alors m = KL.V.E / Y*

où m(kg)= masse apparaissant en sortie de trou blanc

Y*(m3-sr/s²) = charge mésonique (qui permet la cration de matière)

KL (sr/m²) = constante cosmologique (2,2. 10-51 unités S.I.+)

E(J)= énergie du vide

V(m3) le volume du trou concerné

 

TROU de VER

on suppose qu'un trou blanc est relié au trou noir par une espèce de tunnel incertain nommé trou de ver

Dans cette zone, s'effectue la transformation entre l'énergie, sous forme "masse " qui a disparu à l'entrée du trou noir  et l'énergie, sous la forme "charge mésonique" (Y*) elle-même non percepible à nos moyens d'examen, mais qui devient disponible pour créer de la masse en sortie de trou blanc.Ceci est effectif quand la valeur (fluctuante) de la constante cosmologique va le permettre

Le trou de ver est un laboratoire entre la disparition de masse (côté noir) et la création d'entités inductrices de masse (côté blanc)

Il est vraisemblable que le trou de ver est une zone où la fréquence d'énergie de point zéro (qui est une grandeur vibrante) atteint des valeurs supérieure à 1025 Hz

   Copyright Formules-physique ©