CONDUCTION et CONDUCTIVITé THERMIQUES

-conduction et conductivité thermiques

La conduction est un mode de transfert de chaleur -entre 2 points appartenant ou non au même corps- sans transfert de matière

Elle se fait grâce à des molécules qui voyagent lentement en distribuant une partie de leur énergie cinétique par des chocs sur les autres particules rencontrées, ceci créant de la chaleur (exemple: notre peau se réchauffe en la trempant dans un liquide stablement chaud, car les molécules chaudes de l’eau choquent les molécules plus fraîches de notre peau en y créant de l’énergie)

Quand la conduction perdure et affecte, de proche en proche, la profondeur du matériau, on la nomme diffusion (prolongation de transmission d’énergie --ici calorifique-- avec tendance à uniformisation)

Plus l’épaisseur du matériau receveur (conducteur de la chaleur qu'il reçoit) est importante, plus la diffusion s’affaiblira et cette difficulté se nommera résistance thermique (le contraire de la conduction)

Les métaux diffusent leur chaleur acquise par électrons + phonons et sont donc meilleurs conducteurs que les isolants qui n’ont, eux, que les phonons comme transmetteurs.

CONDUCTION stricto sensu

La conduction est une chaleur transmise (donc une énergie de transmission)

(symbole E    dimension L2.M.T- 2  unité le Joule)

-équation de la conduction

ΔEq= Cv.ΔT

ΔEq(J)= conduction = variation de quantité de chaleur acquise par un corps quand il subit une variation de température ΔT(K)

Cv(J/K)= capacité thermique du corps (matériau) à volume constant

-conduction chez les êtres vivants (surtout règne animal)

Eq = (c*.S.ΔT) / v

où Eq(J)= conduction (chaleur) échangée par l’animal avec le milieu

c*(W/m-K)= conductibilité thermique du milieu

S(m²)= surface d’échange entre animal et le milieu (par sa peau)

ΔT(K)= différence de température entre celle de l’animal et celle du milieu

v(m/s)= sa vitesse de déplacement par rapport au milieu

L’échange d'énergie étant proportionnel à c*, l'Homme a 21 fois plus de sensibilité envers la chaleur, au contact de l’eau (pour laquelle c*= 0,556 ) qu‘au contact de l’air (où c* = 0,026)

Autrement dit, un plongeon dans l’eau à 20 degrés nous est 21 fois plus surprenant qu’un passage dans un courant d’air (à 20°)

 

flux de CONDUCTION

Un flux est -comme partout- une puissance (flux de conduction signifie donc puissance thermique)

Pd = c*.S ΔT / Δl

où Pd(W)= flux de conduction subie par un corps

c*(W/m-K)= conductibilité

S(m²)= surface normale du corps, par rapport à la direction du flux

T(K)= température absolue

l(m)= coordonnée

 

P= Ec/ t  >>> le flux de conduction Pd(W) est une conduction (énergie) Ec(J) par unité de temps t(s)

-relation avec le coefficient de transfert thermique

P= k.nt.T

où Pd(W)= puissance (flux) de conduction-diffusion pour un corps

k'(W/m²-K)= coefficient de transfert (thermique)

t(s)= temps et T(K)= température

νt(m²/s)= coefficient de diffusivité

-relation avec la conductibilité

Pd= c*.l.T

où Pd(W)= puissance (flux) de conduction-diffusion pour un corps

c*(W/m-K)= conductibilité thermique

l(m)= distance et T(K)= température

CONDUCTIVITE THERMIQUE

La conductivité thermique est une grandeur totalement similaire à la conductivité électrique (qui a, elle, pour dimensions  L-3.M-1.T3.I2)

C’est une conductance thermique ramenée à l’épaisseur du matériau en cause (elle est donc appelée aussi conductance linéique thermique)

Equation aux dimensions de la conductivité thermique : L-3.M-1.T3.Θ      

Symbole : δ'       Unité S.I.+ = le (K / W-m)

Attention: certains ouvrages mélangent volontiers les termes et nomment conductivité la grandeur "conductibili thermique" (c*) et qui est cependant tout autre chose (à savoir le Laplacien d’une résistivité thermique, donc de dimension L.M.T-3.Θ-1)

La conductivité (ici exprimée) représente une facilité à conduire la chaleur (plus la conductivité d'un matériau est forte, mieux il conduit la chaleur, donc il l’absorbe rapidement (un corps lui en cède dès qu'il l'avoisine) C'est pourquoi un tel matériau à bonne conductivité paraît froid quand on le touche (manuellement) car -bien qu'il soit à la même température ambiante que tous les autres corps voisins- il pompe notre chaleur plus facilement que les autres et il nous rafraîchit la main, en absorbant notre énergie

 

ASPECT MICROSCOPIQUE de la CONDUCTIVITÉ  

C’est une caractéristique liée à la capacité thermique par la relation

δ' = 1 / (3v.Cv)

avec δ '(K/W-m)= conductivité thermique d’une particule

v(m/s)= sa vitesse moyenne

Cv(J/K)= sa capacité thermiqueà volume constant

 

ASPECT MACROSCOPIQUE de la CONDUCTIVITÉ

-formule du cas général de la conductivité (macroscopique)

δ' = t.T / l.Eq

δ'(K/W-m)= conductivité thermique d’un corps homogène

t(s)= temps de l’absorption

l(m)= épaisseur du corps (supposée uniforme)

T(K)= température absolue

Eq(J)= énergie thermique absorbée par le corps

-relation entre conductivité et conductance thermiques

δ' = A’ / l

où A’(K/W)= conductance thermique d’un matériau

δ'(K/W-m)= sa conductivité (thermique)

l(m)= épaisseur du matériau

-relation entre conductivité et conductibilité thermique

δ' = 1 / Δc*

avec Δc*(W-m/K)= Laplacien Δ de la conductibilité c*

-relation entre conductivité thermique et conductivité électriqueouloi de Wiedermann-Franz

δ' / σ' = T / i²

avec σ(S/m)= conductivité électrique du corps

δ'(K/W-m)= conductivité thermique d’un corps conducteur de chaleur, ainsi que de charges électriques

i(A)= courant électrique dans le conducteur

T(K)= température absolue

On trouve aussi cette relation exprimée sous la forme inverse :

σ' / δ' = K.T.[(k.Yd) / Q

avec:Q(C)= charge du conducteur

K = constante liée à la forme du corps

k(J/K)= constante de Boltzmann (1,3806503. 10-23 J / K)

Yd(S)= conductance électrique du conducteur

autres notations identiques à ci-dessus

 

CONDUCTANCE THERMIQUE

La conductance thermique est une grandeur exprimant l’aptitude d’un matériau à homogénéiser la chaleur en son sein par inter-chocs entre ses molécules.

Par extension, c’est une transmission de chaleur par contact, à travers l’interface entre 2 matériaux. 

Equation aux dimensions  :L-2.M-1.T3.Θ         Symbole de désignation   A’        

Unité S.I.+ = K / W

Grandeur similaire à la  conductance électrique 

 

-relation entre conductance et résistance thermiques

Ces 2 grandeurs sont inverses   A’ = 1 / Q*

où A’(K/W)= conductance thermique d’un matériau

Q*(W/K)= sa résistance thermique

 

-relation entre conductance et puissance (calorifiques)

A’ = ΔT / ΔP

avec ΔP (W)= variation de puissance calorifique retransmise par un corps,

créant sa variation de température ΔT(K)

 

-relation entre conductance et conductibilité

A’ = 1 / c*.lé       ou  A’ = l / c*.S

où c*(W/m-K)= conductibilité du matériau traversé

lé(m)= son épaisseur, l(m)= sa longueur, S(m²)= sa section

 

AUTRES NOTIONS PROCHES de la CONDUCTION

voir chapitres sur conductibilité, coefficients de transferts, résistance thermique

   Copyright Formules-physique ©