ABSORPTION de RAYONS LUMINEUX

-absorption de rayons lumineux

ABSORPTION LUMINEUSE EN GÉNÉRAL

Pour une onde (ici lumineuse) qui provient d’un milieu et heurte un nouveau milieu où elle peut évoluer, il y a absorption avec 2 conséquences :

-une absorption énergétique (objet du présent §)

-une conséquence géométrique sur le chemin des rayons (dite réfraction, à voir dans autre chapitre )

L'absorption énergétique est surtout étudiée à partir des grandeurs ci-après :

 

ABSORPTION (STRICTO SENSU)

C'est une énergie lumineuse absorbée

 

Unité d’usage: le lux-seconde-mètre carré(lx-s-m²) qui vaut ( 1/ye.) J/m² (ye étant l’efficacité lumineuse, soit 1/683, à la meilleure longueur d’onde possible)

Ea = P’.t.Ω

avec Ea(lx-s-m²)= énergie lumineuse absorbée

P’(lx-m²/sr)= intensité absorbée en un temps t(s)

Ω(sr)= angle solide d'ambiance (4∏ sr, seulement si c’est l’espace entier et si le système d'unités a le stéradian comme unité d’angle)

ABSORPTION de photons

Un photon suffisamment puissant peut arracher un électron d'un matériau, sous réserve que la fréquence de l'onde lumineuse soit supérieure à une fréquence de seuil

(notion définie par Einstein, lui ayant valu le prix Nobel en 1921)

 

ABSORPTION SURFACIQUE

Nom d'usage : l'exposition lumineuse  et ancienne appellation : lumination

Notons que les formules sont les mêmes que pour l'absorption de rayons ionisants ou à effets thermiques (les unités sont différentes)

Equation de dimensions structurelles : M.T-2        Symbole de désignation : W'       

Unité d’usage : lx-s

W'= p*.t       et   W'= P/ S.t       et aussi    W'= Da.t.Ω

où W'i(J/m² ou lx-s)= exposition lumineuse

p*(lx)= flux lumineux surfacique absorbé pendant le temps t(s) sur une surface S(m²)

t(s)= temps

Da(W/m²-sr ou lux/sr)= absorptivité (rayons thermiques) ou absorbance   (rayons lumineux)

Ω(sr)= angle solide

 

COEFFICIENT D'ABSORPTION ba

ba = cosθ.e-l.Jb

avec ba le coefficient d’absorption (nombre)

θ(rad) angle des rayons par rapport à la normale du récepteur

Jb = 2f.n* / c 

f(Hz)= fréquence

n*(nombre)= indice de réfraction

c(m/s)= vitesse de la lumière dans le vide

l(m) qui est nommée épaisseur optique du milieu (distance parcourue par la lumière dans le corps et supposée arriver perpendiculairement)

-si l est < 1, le milieu est dit optiquement mince

-si l > 1, le milieu est dit optiquement épais

Valeurs pratiques de 

Nota 1: les couleurs absorbées par un corps disparaissent à la vue (donc l'oeil perçoit les autres, c'est à dire celles qui sont réfléchies : un verre apparaissant bleu a absorbé les longueurs d’ondes autres que celles du bleu et un tissu apparaissant noir a absorbé toutes les couleurs)

Nota 2: dans un spectre lumineux, une absorption de bandes spectrales provient de la présence de corps étrangers (vapeur, poussières....)

 

flux LUMINEUX ABSORBÉ

Un flux est une puissance, donc c'est :

Equation de dimensions  : L2.M.T-3         Symbole de désignation : P     

l'unité d’usage est le lx-m² (qui vaut 1 / ye) W

P= E/ t      où Pl(lx-m²/sr)= énergie lumineuse arrivant en un temps t(s)

et ye l'efficacité lumineuse

 

ABSORBANCE SPECIFIQUE

(ou flux lumineux surfacique absorbé)

C'est la grandeur ci-dessus (flux) ramenée à une surface

Equation de dimensions  : M.T-3         Symbole de désignation : P'       

l'unité d’usage est le lux qui vaut 1/ye.Watt/m² (ye étant le coefficient d’efficacité lumineuse, soit 683 à la meilleure longueur d’onde possible)

Cette notion est utilisée commercialement sous le nom de "facteur solaire" pour exprimer l'isolation thermique présentée par des vitrages

 

P’= P / S.cosθ     et    P’= W ‘/ t       

où P’l(lx)= flux surfacique absorbé par une surface S(m²) ou absorbance spécifique d’un corps absorbant une puissance (flux) lumineuse P(lx-m²)

 θ(rad)= angle d’incidence (entre rayon et normale à S)

W'(lx-s)= exposition reçue pendant le temps t(s)

 

ABSORPTION LUMINEUSE SPECIFIQUE

C'est une énergie (lumineuse) E absorbée, provenant d'un angle solide  Ω

A*la(J/sr) = E / Ω

 

INTENSITE LUMINEUSE ABSORBEE

(ou flux lumineux spatial absorbé)

Equation de dimensions : L2.M.T-3.A-1      Symbole de désignation : P'       

l'unité d’usage est le lx-m²/ sr

P’= Pl / Ω        P’l(lx-m²/sr)= intensité lumineuse d'une puissance P '(lx-m²) arrivant en un angle solide Ω(sr)

 

ABSORBANCE

(ou 

Notion exprimant comment un flux lumineux (réparti dans la section d'un angle solide) est absorbé par un corps

Equation de dimensions  : M.T-3.A-1      Symbole de désignation : Dl        

l'unité d’usage est le lx / sr

D= P/ S.Ω

avec Pl(lx-m²)= puissance lumineuse arrivant en un angle solide Ω(sr) sur une surface S(m²)

D = dW' / Ω.dt   l'absorbance est égale à :

(variation de l'exposition lumineuse) / (angle solide Ω(sr) x variation de temps)

 

LE COEFFICIENT D’ABSORBANCE  symbolisé bl   est le rapport entre puissance absorbée et puissance incidente pour ce qui concerne les ondes lumineuses.

Il marque donc la déperdition de puissance après absorption

-cas général: pour une lumière multichrome, le flux lumineux absorbé dépend du flux lumineux incident selon la loi d’absorption >>>:

Pa= Pr.cosθ.e-l.Jb      C'est la loi de Bouguer

Pa et Pr (lx-m²)= puissances respectivement absorbée et reçue par le matériau

Jb(m-1)= coefficient d’atténuation

θ(rad)= angle d’arrivée des rayons par rapport à la normale du récepteur

l(m)= épaisseur du corps absorbant

Nota : la formule de relation entre les puissances (ou flux), ci-dessus peut identiquement s’exprimer par une relation entre des énergies, ou des puissances surfaciques ou des intensités (qui sont toutes proportionnelles aux flux P)

On nomme coefficient d’absorption monochromatique (ou spectrique)  

le rapport  bl / λ (pour une lumière monochromatique de longueur d’onde λ donnée)

bl = (1 – e-Jb.l ).nv

où Jb(m-1)= coefficient d’atténuation (linéaire)

l(m) est nommée épaisseur optique du milieu (distance parcourue par la lumière dans le corps et supposée arriver perpendiculairement)

si l est < 1,le milieu est dit optiquement mince; si l > 1, le milieu est dit optiquement épais

nv(nombre)= concentration volumique spécifique du corps(fraction volumique)

Dans un spectre lumineux, une absorption de bandes spectrales provient de la présence de corps étrangers (vapeur, poussières....)

Valeurs pratiques de bl : matériaux clairs (0,15 pour les blancs à 0,40 pour les beiges)--matériaux jaunes-verts (0,50 à 0,65)--matériaux bleus (0,70 à 0,80)--matériaux violets et sombres (0,90 et plus)

On l’utilise dans la formule de l’absorption:

ba = e-Jb.l

ba est le coefficient d’absorption

Jb = 2f.n* / c

f(Hz)= fréquence

n*(nombre)= indice de réfraction

c(m/s)= vitesse de la lumière dans le vide

 

LE POUVOIR ABSORBANT (ou POUVOIR d'ABSORPTION)

C'est yk (coefficient sans dimension) = pourcentage de puissance absorbée, comparée à celle du corps noir en conditions équivalentes

Exemple en lumière:

y= P/ Pi      où Pa = puissance lumineuse absorbée par le matériau et Pi = puissance lumineuse du corps noir équivalent

 

EFFET KELVIN

Quand un conducteur est plongé dans un champ électromagnétique, des électrons sont mis en mouvement à la surface du conducteur et y pénètrent

Pour la lumière (qui est un champ électromagnétique) la distance maximale de pénétration superficielle dans un conducteur est

lp = 1 / Jb

lp(m)= profondeur limite de l’effet de peau (dite "pénétration")

Jb(m-1)= coefficient d’atténuation linéique, qui vaut lui-même 2ν.n* / c

ν(Hz)étant la fréquence, n*(nombre) étant l’indice de réfraction et c(m/s) la vitesse de la lumière dans le vide

Exemples : pénétration de l'ordre de 10-6 mètre dans un métal usuel pour une haute fréquence

Pour le cuivre :l= 7.10-2 / (ν)1/2 où len m et ν  en Hz

Autre exemple dans l'aluminium, pour une lumière de longueur d'onde verte >>> l# 10-8 

 

ABSORPTION DE LUMIÈRE PAR BATTERIES SOLAIRES 

(par un ensemble d'éléments photovoltaïques)

La technique photovoltaïque permet de transformer l'énergie lumineuse (usuellement solaire) en électricité

Les photons sont surtout ceux de la zone 500 à 700 térahertz .

La force électromotrice produite en initiation est # 0,6 Volt, ce qui implique de mettre en série plusieurs cellules pour atteindre une pointure d'utilisation courante (20 éléments pour 12 Volts par exemple)

PUISSANCE

La puissance produite par un panneau photovoltaïque est exprimée en Watt-crête (Wc) et la puissance dépensée (par le système utilisateur) est exprimée en Watts

Un Watt-crête(Wc) est un Watt délivré dans deux conditions particulières, à savoir >> sous un très fort éclairement solaire (puissance surfacique) de 10 W/m² et ceci à une température ambiante  de 25°C

On choisit comme définition du prototype de panneau solaire

un panneau de 1000 W/m² de puissance surfacique –(c'est évidemment un maximorum idéalisé, car on ne reçoit en moyenne que 168 W/m² en moyenne sur Terre, donc le panneau prototype a la grande chance d'être dans une zone qui reçoit 6 fois plus d'éclairement que la moyenne)

On suppose donc que ce panneau prototype a une surface de 1 m² et qu’il est soumis à une puissance (flux) surfacique solaire idéale (ensoleillement idéal) de 1000 W/m² , sous une température de 25° C, pendant une durée d'ensoleillement de 1000 heures par an (cas moyen de la France)

Donc sa production d'énergie annuelle maximale théorique est de

1000 Watt-crête /m² 1 m² 1000 heures. = 1000 kWh produits (annuellement)

Quand on utilise un ensemble de panneaux, on dit alors  batterie solaire 

 

RENDEMENT PHOTOVOLTAÏQUE

La valeur théorique de puissance fournie par un panneau (selon formule ci-dessus) doit être modulée, en pratique, en fonction des considérations suivantes :

-correctifs sur l'ensoleillement (- 20% à + 40% de la valeur théorique, en France, selon la région, du nord au sud)

(+ ou -0,4 % par degré de différence avec les  25°C théoriques)

-correctif lié à la qualité technologique du panneau : le rendement réel est actuellement compris entre 11 et 20% (avec des extrêmes de 40% , mais très onéreux)

-la perte liée au transport aérien ultérieur de l'électricité jusqu'à l'utilisateur, ce qui diminue encore le rendement (3 à 4% perdus, surtout par effet Joule) 

Il reste en moyenne # 12% des 10kWh ci-dessus idéalisés, soit 120 kWh utilisables par m² installé et par an (alors que chaque habitant de France consomme 24000 kwh par an, i.e. ce que produit une surface de 200 m² de panneaux)

   Copyright Formules-physique ©